Indian Statistical Institute, Bangalore Centre

B.Math (Hons) II Year, Second Semester Semestral Examination Optimization May 10, 2013 Instructor: Pl.Muthuramalingam

Time: 3 Hours

The paper carries 50 marks. You need to answer for 45 marks.

1. (a) Let U be a convex set in \mathbb{R}^n , $\{g_\alpha : \alpha \in I\}$ a finite or infinite family of convex functions : $U \longrightarrow \mathbb{R}$. Assume that $h(u) = \sup_{\alpha} g_\alpha(u)$ is finite for each u in U. Show that h is convex. [2]

(b) Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be given by $f(x_1, x_2) = (x_1^2 + x_2^2)^{1/2}$. Show that f is a convex function. [2]

- 2. State and prove the first order condition of Lagrange method of multipliers. [7]
- 3. (The aim is to prove strong duality theorem.) Let $A : \mathbb{R}^n_{col} \longrightarrow \mathbb{R}^{m_0}_{col}$ be a linear onto map. Let $A = \begin{bmatrix} a^1, a^2, \cdots, a^n \end{bmatrix}$ where a^i is a column vector. Let $B = \begin{bmatrix} a^1, a^2, \cdots, a^{m_0} \end{bmatrix}$ be a basis.

For

$$\ell$$
 in $\{m_0 + 1, m_0 + 2, \cdots, n\}$, let $a^{\ell} = \sum_{j=1}^{m_0} r^{\ell}_j a^{j}_{\sim}$

For

$$1 \le j \le m_0 \le m_0 + 1 \le l \le n, \text{ let } B(\ell, j) = BU\{a^\ell_{\alpha}\} \setminus \{a^j_{\alpha}\}$$

(a) If $r_j^{\ell} \neq 0$ show that B(l, j) is a basis. [The converse is also true, but do not prove]. [2]

(b) Let x be B basic, and y be B(l, j) basic solution for Au = b where b is a given fixed vector. Show that $y_{\ell} = x_j/r_j^{\ell}$, $y_i = x_i - y_{\ell} r_i^{\ell}$ for $i \neq \ell$ [1]

(c) Let x, y be as above. For any cost vector c given by $c^t = (c_1, c_2, \cdots, c_{m_0}, c_{m_{0+1}}, \cdots, c_n),$

show that
$$\underset{\sim}{c^t y} - \underset{\sim}{c^t x} = y_\ell \left[c_\ell - \sum_{p \neq \ell} c_p r_p^\ell \right].$$
 [1]

(d) Assume that the B basic feasible solution $\underset{\sim}{x}$ satisfies $\underset{\sim}{c^{t}x} = \inf\{\underset{\sim}{c^{t}u} : Au = b, u \ge 0\}$.

Assume that for each ℓ_0 in $\{m_0 + 1, m_0 + 2, \dots, n\}$, there exists j_0 in $\{1, 2, \dots, m_0\}$ such that $B(\ell_0, j_0)$ is a base and has a basic feasible solution. Then show that

$$c_{\ell} - \sum_{p \neq \ell} c_p \ r_p^{\ell} \ge 0 \tag{I_1}$$

for each ℓ in $\{m_0 + 1, m_0 + 2, \dots n\}$.

[1]

(e) Define c^* , truncation of c, by $c^{*^t} = (c_1, c_2, \cdots c_{m_0})$. If I_1 holds, show that $c - A^t (B^{-1})^t c^* \ge 0$ (I_2). [2] (f) Let x be as in (d). If (I_2) holds show that strong duality theorem holds. [2]

4. (a) For $B : \mathbb{R}^n_{col} \longrightarrow \mathbb{R}^{m_0}_{col}$ linear map, show that $(Bu)'Bu \le ||B||^2 u'u$ for all $u \in \mathbb{R}^n_{col}$ where $||B||^2 = \sum_{i,j} b_{ij}^2$, $B = ((b_{ij}))$. [1]

(b) Let A_0, A_1, A_2, \cdots be sequence of real symmetric $n \times n$ matrices. Assume that (ij) the entry of A_k converges to (ij) entry of A_0 as $k \longrightarrow \infty$. Let L be any linear subspace of \mathbb{R}^n . Assume that $\inf\{u'A_0u : u \in L, u'u = 1\} = p_0 > o$. Show that there exists k_0 such that for all $k \ge k_0$, we have $u'A_ku \ge \frac{p_0}{2}u'u$ for all $u \in L$. [2]

- 5. Let $A : \mathbb{R}^n_{col} \longrightarrow \mathbb{R}^{m_0} col$ be linear onto. Let $z = (z_1, z_2, \cdots, z_n), z_i > 0$ for each i with $\sum_{i=1}^{n} z_i = 1$. Let Az = 0. Let $D = \text{diag}(z_1, z_2, \cdots, z_n)$. Define $B : \mathbb{R}^n_{col} \longrightarrow \mathbb{R}^{m_0+1}_{col}$ by $B = \begin{bmatrix} AD \\ (1, 1, \cdots, 1) \end{bmatrix}$
 - (a) Show that BB^t is invertible. [5]
 - (b) For $Q = B^t (BB^t)^{-1} B$, prove $Q = Q^2 = Q^t$. [2]
 - (c) If P = 1 Q, then Range P = null B. [1]
- 6. Let $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$ and $g(x_1, x_2, x_3) = x_1^2 + x_2^2 x_3^2$. Find $\inf\{f(x) : g(x) = 1\}$ using the first order and second order conditions of Lagrange. [5]
- 7. Let $f(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3$, $g_1(x_1, x_2, x_3) = 4 (x_1^2 + x_2^2 + x_3^2)$, and $g_2(x_1, x_2, x_3) = 1 (x_1 + x_2 + x_3)$. Using Kuhn-Tucker-Karush theorem, study the existence of local maxima or minima for the function f on the given sets and then find them.
 - (a) $\{g_2 = 0\} \cap \{g_1 > 0\}.$ [6]
 - (b) $\{g_2 > 0\} \cap \{g_1 = 0\}.$ [4]

[3]

- 8. Write an essay on <u>One</u> of the topics :
 - (a) Diet problem
 - (b) Transportation problem
 - (c) Matching problem
 - (d) Any topic interesting in this course, other than found in questions 1 to 7

Duality Table

	Primal	Dual Table
	$A, \mathbf{x}, \mathbf{b}, \mathbf{c}$	$A^t, \mathbf{y}^t, \mathbf{c}^t, \mathbf{b}^t$
$i\varepsilon I_1,$	$\sum_{i} a_{ij} x_j = b_i$	$y_i real, y_i \gtrless 0$
$i\varepsilon I_2,$	$\sum_{i=1}^{J} a_{ij} x_j \ge b_i$	$y_i \ge 0$
$i\varepsilon I_3,$	$\sum_{i}^{J} a_{ij} x_j \le b_i$	$y_i \le 0$
$j\varepsilon J_1,$	$x_j real, x_j \gtrless 0$	$\sum_{i} y_i a_{ij} = c_j$
$j\varepsilon J_2,$	$x_j \ge 0$	$\sum_{i}^{i} y_i a_{ij} \le c_j$
$j\varepsilon J_3,$	$x_j \leq 0$	$\sum_{i=1}^{i} y_i a_{ij} \ge c_j$
	$min\sum_j c_j x_j$	$max\sum_i y_i b_i$